

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

FORMAL MODELS OF COMPOSABLE SECURITY
ARCHITECTURES

OCTOBER 2011

TECHNICAL MEMORANDUM

AFRL-RI-RS-TM-2011-001

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TM-2011-001 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
DUANE GILMOUR PAUL ANTONIK, Technical Advisor
Branch Chief Advanced Computing Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

OCTOBER 2011
2. REPORT TYPE

 INTERIM TECH MEMO
3. DATES COVERED (From - To)

JAN 2009 – DEC 2010
4. TITLE AND SUBTITLE

FORMAL MODELS OF COMPOSABLE SECURITY
ARCHITECTURES

5a. CONTRACT NUMBER
In-House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)

Dilia E. Rodriguez

5d. PROJECT NUMBER
23T4

5e. TASK NUMBER
PR

5f. WORK UNIT NUMBER
OJ

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome, NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TM-2011-001

12. DISTRIBUTION AVAILABILITY STATEMENT
Distribution Approved for Public Release; Distribution Unlimited. PA# 88ABW-2011-5510
Date Cleared: 11 OCT 2011

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The objective of this project is to develop formal technology to support the development of secure systems. Presently much research
and practice in security is concerned with particular enforcement mechanisms, and implementation or code-level vulnerabilities. At
this late stage in the development of a system many security flaws are difficult to detect and fix. A more general formulation of
security supports specification and analysis, and provides strong implementation-independent guarantees. It makes it possible to
consider security from the early design of a system. To contribute toward this goal this project exploits results on the
compositionality of information-flow properties to develop formal models and lightweight formal techniques that allow the
specification and analysis of confidentiality and integrity requirements, and can be used to explore the design space of systems
meeting such requirements.

15. SUBJECT TERMS

design of secure systems, information-flow security, lightweight formal methods

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

12

19a. NAME OF RESPONSIBLE PERSON
DILIA E. RODRIGUEZ

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

i

Contents

1 Introduction 3

2 Technical Background 3
2.1 Information Flow and Basic Security Properties 3
2.2 Rewriting Logic and Maude . 4

3 Compositionality Assistant 5

3.1 Model . 5
3.2 Design-Space Exploration . 6

4 Next 9

1

1 Introduction

The objective of this project is to develop formal technology to support the de-
velopment of secure systems. Presently much research and practice in security
is concerned with particular enforcement mechanisms, and implementation or
code-level vulnerabilities. At this late stage in the development of a system many
security flaws are difficult to detect and fix. A more general formulation of se-
curity supports specification and analysis, and provides strong implementation-
independent guarantees. It makes it possible to consider security from the early
design of a system. To contribute toward this goal this project exploits results
on the compositionality of information-flow properties to develop formal models
and lightweight formal techniques that allow the specification and analysis of
confidentiality and integrity requirements, and can be used to explore the design
space of systems meeting such requirements.

2 Technical Background

This research seeks to develop rigorous specification and analysis techniques to
support the development of secure systems. The next section briefly describes
their theoretical foundation. The following gives the preliminaries for the logic
used to formalize them.

2.1 Information Flow and Basic Security Properties

Many security requirements can be met by restricting the flow of information.
Goguen and Meseguer introduced this approach to security [3], and defined
its fundamental property, noninterference. Intuitively, A is noninterfering with
B if the actions of A have no effect on the observations of B. This provides
confidentiality for A, and integrity for B. Over the years noninterference has
been found to be either too restrictive, not restrictive enough, or not suitable
for nondeterministic systems. As a result a number of variants of it have been
defined, which have the same basic intuition, and collectively are known as
information-flow properties. When they hold, many subtle attacks that exploit
programs by using legitimate access to data are simply ruled out. Thus, this
approach to security contributes to the goal of inherently secure systems.

To be able to manage the analysis of complex systems it is necessary to
have some divide-and-conquer approaches. General theories of compositionality
for safety and liveness properties, for example, make it possible to infer the
properties of a system from the properties of its components. Information-
flow properties, however, fall outside this framework. Furthermore, in general,
these properties do not compose. However, over the years disparate treatments
have shown that some properties, or restrictions of properties, do compose.
[7, 8, 9, 10, 12]. More recently, Heiko Mantel proposed a unifying treatment of
information-flow properties [4], in which these previous results can be rederived,
and which also makes possible the definition of new information-flow properties,

2

and the derivation of their compositional properties.
Mantel discovered a set of very basic elementary information-flow properties,

which he calls Basic Security Properties (BSP’s), and proved a collection of
theorems stating how:

• some BSP’s (some individually, others in combinations) imply other BSP’s

• known information-flow properties are defined in terms of BSP’s

• known information-flow properties are related by implication

• under what conditions these BSP’s are preserved under composition

• under what conditions BSP’s are trivially satisfied.

It turns out that under composition trivially satisfied BSP’s might lead to the
emergence of nontrivial information-flow properties.

With this framework as a theoretical foundation we developed an inference
system for the specification and analysis of information-flow properties. The
next section briefly describes the logic used.

2.2 Rewriting Logic and Maude

Rewriting logic [11, 1] is an executable computational logic that has been shown
to be a very general logical and semantic framework [6, 5]. In rewriting logic
computation and deduction coincide. It can be used to specify a system and
define its semantics, or specify logics and formal tools that mechanize deduction.

A system or a logic is specified by a rewrite theory

R = (Σ, E, R),

where signature Σ defines its syntax, E is a set of equations, and R is a set of
rewrite rules.

When R = (Σ, E, R) specifies a system, the structure of its states is specified
as an algebraic data type by (Σ, E), while its transitions are specified by the
rewrite rules in R, which have the following form:

l : t → tl if cond .

A label l names each rule. The Σ-terms t and tl specify patterns of fragments of
the state of the system. Whenever the condition cond holds, a local concurrent
transition takes place: a state fragment that is an instance of t changes into a
state fragment that is the corresponding instance of tl .

Rewriting logic has no particular syntax, which makes it possible for (Σ, E)
to define a domain-specific language, with whatever structure is appropriate.
Consequently, the states and the transitions describe the system without any
extraneous encodings imposed by the logic. This supports the goal of this
research of lowering the technical barrier to rigorous specification and analysis
of systems.

3

When R = (Σ, E, R) specifies a logical system, Σ specifies its logical con-
nectives; E, the structural properties of its propositions; and R, specifies the
inference rules of the system, which concurrently rewrite formulas into other
formulas, constructing proofs in the logic.

Rewriting logic has been implemented as the Maude system [2], which sup-
ports specification, programming, and verification. The models and techniques
developed in this project have been implemented in Maude.

3 Compositionality Assistant

Component-based design provides a way of simplifying the design of complex
systems. Components can be analyzed separately, and properties of systems
composed from them can be inferred from those of the components. We have de-
veloped a Compositionality Assistant, a rewrite theory RCA = (ΣCA , ECA , RCA),
implemented in Maude. Given some components assumed to satisfy some given
security properties, it supports the exploration of designs of secure systems built
from them.

3.1 Model

In various treatments of security, including Mantel’s, a nondeterministic system
is represented by an event system, a tuple (E, I , O, Tr), where E is a set of
events, I and O are disjoint subsets of E, the set of input events, and the set of
output events, respectively, and Tr is the set of behaviors of the system, which
are sequences of events. Included in the signature ΣCA are sorts (types) and
operators to represent events and systems. The sets of events of a system would
be represented by a term

|e> E |i> I |o> O

of sort Interface, where E, I, and O are terms of sort EventSet.

To define security requirements a set of security domains D is introduced,
and for each domain D ∈ D, a view νD . For example, a set of domains could
be {H, L}, for High and Low, or in an agent-based application, different sets of
agents could constitute the domains. A view for a domain D, νD = (V, N, C)
partitions the set of events E into a set V of events that are visible from domain
D, a set C of events that are confidential, kept secret from domain D, and a
set N of events that are neither visible, nor secret, but could be deduced. We
represent a view in Maude by a term

|v> V |n> N |c> C

of sort View, with subterms of sort EventSet.

To ensure that the constraints a view imposes on information flow are met a
worst-case assumption is made: untrusted users might have complete knowledge
of the system specification. BSP’s are closure properties on the set Tr of traces
of a system that require sufficiently many possible traces such that an adversary

4

cannot deduce information of a particular kind [4]. Mantel’s framework based on
BSP’s can express information-flow in the literature, such as separability, per-
fect security property, etc. These and new information-flow properties can be
defined as conjunctions of BSP’s. Maude supports object-based specifications,
in which a configuration is constructed by an associative and commutative op-
erator. Thus, we model a component that satisfies information-flow properties
as a configuration of objects that denote the satisfaction of BSP’s.

The formalization of the Compositionality Assistant has a class for each
BSP. Each BSP is a closure property on Tr . If there is some trace t ∈ Tr of
a particular form, described in terms of elements of the sets of the view, and
for some BSP’s, of other subsets of E, it requires that some trace tl obtained
from t by the deletion or insertion of some specified events, be also in Tr . To
express that a component specified by the event system ES = (E, I , O, Tr), for
a given view νD = (V, N, C), satisfies a BSP, say BSD , we use an object of the
following form:

< Id : BSD |
interface : |e> E |i> I |o> O,
view : |v> V |n> N |c> C > .

Classes for other BSP’s have additional attributes for the parametric sets of
events they require.

Each component has an identifier, above Id. A secure component, that is,
one that satisfies one or more BSP’s, or properties defined in terms of BSP’s, is
modelled by a configuration of objects, each with the component identifier.

3.2 Design-Space Exploration

Theorems in [4] relate BSP’s of a component by implication, define under what
conditions BSP’s of components are preserved when they are composed, and
conditions in which BSP’s are trivially satisfied. These theorems are formalized
in RCA as rules of the form:

l : t → tl if cond ,

where t and tl are configurations of objects denoting security properties of com-
ponents. If the condition cond is true the security property represented by t
implies the security property represented by tl . Proofs are constructed by the
application of these rules. Given a configuration of objects specifying the prop-
erties a set of components satisfies it is possible, in general, to construct proofs of
other properties the components satisfy, and by equationally ”connecting” out-
puts of one component to inputs of another, to construct proofs of properties of
the resulting composite system.

Aside from the BSP classes mentioned above, there are also superclasses
BasicSecProp and SecurityProp.

sorts Total R BSD BSI BSIA FCD FCD BasicSecProp SecurityProp .
subsort Total < SecurityProp .
subsorts R BSD BSI BSIA FCD FCI < BasicSecProp < SecurityProp .

5

Given a configuration expressing the security properties of a set of components,
it might be possible to construct zero, one, or many properties implied by those
denoted by the configuration.

Using Maude’s search command we may query the system about security
properties of interest. This would automatically generate proofs by the appli-
cation of the rules in RCA , and present the one or more solutions requested, or
report that no solution to our query was found.

For example, suppose we have two components, with identifiers id1 and id2.
A configuration of objects would specify their security properties, and equations
identifying outputs of one to inputs of the other would specify the particular
composition of these components to be analyzed. The inference system deduces
properties implied by those of the components, in the specified composition,
by transforming this initial configuration. The security properties of any com-
ponent or system are represented by objects with the identifier of the system.
A system composed from components with identifiers id1 and id2 would have
identifier id1 . id2. Thus, the presence of an object with such identifier would
indicate that the corresponding composite system satisfies a security property.

To learn, for example, whether the composite system satisfied any BSP we
would submit the following query:

search system

=> *
[< id1 . id2 : BasicSecProp | Atts:AttributeSet >

C:Configuration] .

Given a specification system, this command queries whether the inference sys-
tem can construct a configuration with the pattern described within the square
brackets. Such a configuration would have an object with identifier id1 . id2
of the class BasicSecProp, which is a superclass of each BSP-class. Neither the
particular values of the attributes of this object, nor the particular constituents
of the rest of the configuration are of interest, and so these are represented by
variable Atts of sort AttributeSet and variable C of sort Configuration, re-
spectively. Any configuration with this pattern represents the statement that
the composite system with identifier id1 . id2 satisfies some BSP. This query
would generate all the possible proofs of this statement, and return all the con-
figurations matching the pattern.

To learn whether there is some particular BSP, say BSD , that this system
satisfies the query would be:

search [1] system

=> *
[< id1 . id2 : BSD | Atts:AttributeSet >

C:Configuration] .

Only one solution would be generated, if there is at least one proof. (We could
specify some other limit on the number of solutions.) Otherwise, the system
would report that there is no solution.

6

The views of the components induce a set of possible views for systems
composed from them. If interested in a particular view, the query would have
the following form:

search [1] system

=> *
[< id1 . id2 : BSD |

view : |v> V:EventSet |n> N:EventSet |c> c12,
Atts:AttributeSet >

C:Configuration] .

The subterms of the view could all be ground (having no variables), or we could
constrain only one of the sets of the view. The above example, is concerned
with a view that keeps the set of events c12 secret. It does not matter whether
the remaining events are visible or deducible. Only if BSD is satisfied for this
particular specification view, would there be a solution.

One may also define information-flow properties known from the literature,
or newly defined for a particular application. A new class would be introduced:

sort MyInfoFlowProp .
subsort MyInfoFlowProp < SecurityProp .

Included in the set of equations ECA there would be a configuration of BSP
objects defined to be our new property. The following query would determine
whether a composite system could satisfy it.

search [1] system

=> *
[< id1 . id2 : MyInfoFlowProp |

view : |v> V:EventSet |n> N:EventSet |c> c12,
Atts:AttributeSet >

C:Configuration] .

With these sorts of queries, and also with model-checking commands, it is
possible to explore the design space for some application or system.

Securing cyberspace is a major concern for government, military, and com-
mercial enterprises. Much of the practice and research on security addresses it
at the implementation or late stages of system development. Other approaches
are based on semiformal methods, which are not suited for the rigorous analysis
that the security of systems requires. Security needs to be considered from the
earliest stages of system design, and for this rigorous, formal support is required.
This project has sought to contribute toward that end by taking as its theoretical
foundation the very flexible compositionality results from Mantel’s information-
flow security framework, and by developing lightweight formal methods that
exploit those results to support the exploration of the design space. We briefly
indicate below the objective of the remainder for this project.

7

4 Next

While the system we have described can be useful in designing secure systems,
it can have spatial and time limitations. BSP’s for one view and parametric
event sets induce BSP’s for other related views and subsets of the parametric
sets. Thus, we have a combinatorial growth in the proof search space. While
we developed some optimization techniques that reduced this search space, we
will investigate next models that would have a greater impact on the efficiency
and scalability of our techniques.

References

[1] Roberto Bruni and José Meseguer. Generalized rewrite theories. In Proceed-
ings of ICALP’03, in Lecture Notes in Computer Science, vol. 2719, 2003,
pp. 252–266.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and

C. Talcott. All About Maude — A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic. Springer,
2007.

[3] Joseph A. Goguen and José Meseguer. Security Policies and Security Models.

In IEEE Symposium on Security and Privacy, pp 11–20, 1982.

[4] Heiko Mantel. On the composition of secure system. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 88–101, May 2002.

[5] Narciso Mart́ı-Oliet and José Meseguer. General logics and logical frame-

works. In: Gabbay, D. M. (ed.) What is a Logical System? Studies in Logic
and Computation, vol. 4, pp. 355–392. Oxford University Press, Oxford
(1994)

[6] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic as a logical and

semantic framework. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of
Philosophical Logic, vol. 9, 2nd. edn., pp. 1–87. Kluwer Academic Publishers,
Dordrecht (2002)

[7] D. McCullough. Specifications for Multi-Level Security and a Hook-Up Prop-

erty. In IEEE Symposium on Security and Privacy, pp 161–166, 1987.

[8] D. McCullough. A Hookup Theorem for Multileve Security. IEEE Transac-
tions on Software Engineering. 16(6), 1990.

[9] J. McLean. A General Theory of Composition for Trace Sets Closed un-

der Selective Interleaving Functions. In IEEE Symposium on Research in
Security and Privacy, pages 79–93, 1994

8

[10] J. McLean. A General Theory of Composition for a Calss of ”Possibilistic”
Security Properties. IEEE Transactions on Software Engineering, 22(1):53–
67, 1996.

[11] José Meseguer. Conditional rewriting logic as a unified model of concur-

rency. Theoretical Computer Science 96(1) (1992) pp. 73–155.

[12] A. Zakinthinos and E. S. Lee. A General Theory of Security Properties. In
IEEE Symposium on Security and Privacy, pages 94–102, 1997.

